Quick Start

Example

Consider the following (trivial) DAE system as a quick example:

\[\left\{ \begin{alignedat}{3} \dot x & = y, \\ y & = \cos(t), \end{alignedat} \right.\]

with the initial condition:

\[\left\{ \begin{alignedat}{3} x\rvert_{t=0} & = 0, \\ y\rvert_{t=0} & = 1. \end{alignedat} \right.\]

This system contains one simple differential equation and one algebraic equation. The analytic solution is the following:

\[\left\{ \begin{alignedat}{3} x(t) & = \sin(t), \\ y(t) & = \cos(t). \end{alignedat} \right.\]

Below is a simplified procedure of defining and solving the given DAE system using dae-cpp.

Solving the system

Step 0. Include dae-cpp header into the project

#include <dae-cpp/solver.hpp>

Optionally, the daecpp namespace can be added to the project:

using namespace daecpp;

Alternatively, use daecpp:: prefix for all dae-cpp types and classes.

Step 1. Define the mass matrix of the system

The mass matrix contains only one non-zero element:

\[\mathbf{M} = \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix}.\]
struct MyMassMatrix
{
    void operator()(sparse_matrix &M, const double t)
    {
        M(0, 0, 1.0); // Row 0, column 0, non-zero element 1.0
    }
};

For more information about defining the mass matrix, see Mass Matrix class description.

Step 2. Define the vector function (RHS) of the system

struct MyRHS
{
    void operator()(state_type &f, const state_type &x, const double t)
    {
        f[0] = x[1];          // y
        f[1] = cos(t) - x[1]; // cos(t) - y
    }
};

For more information about defining the vector function (RHS) of the system, see Vector Function class description.

Step 3. Set up the DAE system

MyMassMatrix mass; // Mass matrix object
MyRHS rhs;         // Vector-function object

System my_system(mass, rhs); // Defines the DAE system object

For more information about the System class, see Solving DAE system section.

Step 4. Solve the system

state_vector x0{0, 1}; // The initial state vector (initial condition)
double t{1.0};         // The integration interval: t = [0, 1.0]

my_system.solve(x0, t); // Solves the system with the given initial condition `x0` and time `t`

or simply

my_system.solve({0, 1}, 1.0);

Vector of solution vectors x and the corresponding vector of times t will be stored in my_system.sol.x and my_system.sol.t, respectively.

The entire C++ code is provided in the Quick Start example.

For more information about using solve functions, see Solving DAE system section.

(Optional) Step 5. Define the Jacobian matrix to boost the computation speed

Differentiating the RHS w.r.t. \(x\) and \(y\) gives the following Jacobian matrix:

\[\mathbf{J} = \begin{vmatrix} 0 & 1 \\ 0 & -1 \end{vmatrix}.\]

This matrix can be defined in the code as

struct MyJacobian
{
    void operator()(sparse_matrix &J, const state_vector &x, const double t)
    {
        J.reserve(2);  // Pre-allocates memory for 2 non-zero elements (optional)
        J(0, 1, 1.0);  // Row 0, column 1, non-zero element 1.0
        J(1, 1, -1.0); // Row 1, column 1, non-zero element -1.0
    }
};

Then add the user-defined Jacobian to the solve() method:

my_system.solve(x0, t, MyJacobian()); // Starts the computation with Jacobian

Defining the analytic Jacobian matrix can significantly speed up the computation (especially for big systems).

If deriving the Jacobian matrix manually is not a feasible task (e.g., due to a very complex non-linear RHS), the solver allows the user to specify only the positions of non-zero elements of the Jacobian matrix (i.e., the Jacobian matrix shape). All the derivatives will be calculated automatically with a very small computation time penalty (compared to the manually derived analytic Jacobian).

For more information about defining the Jacobian matrix, see Jacobian Matrix class description.

(Optional) Step 6. Tweak the solver options

For example, restrict the maximum time step:

my_system.opt.dt_max = 0.1;           // Update `dt_max`
my_system.solve(x0, t, MyJacobian()); // Restart the computation

See Solver Options class description for more information.